In Vitro and In Vivo Activity of Melflufen in Amyloidosis

Ken Flanagan, PhD; Muntasir M. Majumder, PhD; Romika Kumari, PhD; Juho Miettinen, PhD; Ana Slipicevic, PhD; Sarah A. Holstein, MD, PhD; Michelle L. Varney, MS; Minna Suvela, MSC; Fredrik Lehmann, PhD; Nina N. Nupponen, PhD* and Caroline A. Heckman, PhD*

Uusimaa Hospital, Helsinki, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Oncopeptides AB, Stockholm, Sweden; University of Nebraska Medical Center, Omaha, NE, USA.*Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.

Background

- **In vivo studies:** Light chain (LC) amyloidosis is a severe disease triggered by overproduction of monoclonal LCs. Melflufen (melphalan flufenamide ethyl ester) is a peptide-drug conjugate with potent antifolate and direct cytoskeletal disrupting effects. Melflufen showed promising efficacy in patients with AA amyloidosis.
- **Cellular toxinology and apoptosis:** Melflufen demonstrated superior efficacy in amyloidosis and bone marrow plasma cell toxicity compared to melphalan.
- **Ex vivo analysis:** Amyloidogenic populations of plasma cells, including the heart and kidneys, caused organ dysfunction in a model of AA amyloidosis.

Methods

- **Patient derivation:** MM.1S, RPMI-8226, and ALMC-1 cell lines were derived from amyloidosis patients and will be used to analyze the effects of melflufen on amyloidogenic populations of cells.
- **In vitro assay:** The human myeloma cell line, MM.1S, and patient-derived light chain secreting ALMC-1 and ALMC-2 were treated with melflufen in vitro.
- **In vivo study:** Single cell sequencing on transplanted mouse models will be used to analyze the effects of melflufen on amyloidogenic populations of cells.

Results

- **Ex vivo assay:** Melflufen demonstrated superior efficacy to melphalan in inhibiting plasma cell toxicity in vivo.
- **In vivo study:** Melflufen demonstrated significant efficacy in reducing amyloidogenic populations of cells, including the heart and kidneys, causing organ dysfunction in a model of AA amyloidosis.

Conclusions

- **In vivo study:** Melflufen demonstrated superior efficacy in inhibiting plasma cell toxicity compared to melphalan with increased plasma cell death and decreased secretion of light chains.
- **Ex vivo assay:** Melflufen demonstrated superior efficacy in inhibiting plasma cell toxicity compared to melphalan with increased plasma cell death and decreased secretion of light chains.

Disclosures

- **Oncopeptides:** Employment.
- **Orion Pharma:** Employment.
- **Celgene:** Employment.
- **Varney:** Employment.
- **Lehmann:** Employment.
- **Varney:** Consultancy.
- **Lehmann:** Consultancy.
- **None:**

Presented at the 61st Annual Meeting of the American Society of Hematology (ASH), December 7-10, 2019, Orlando, FL, USA.